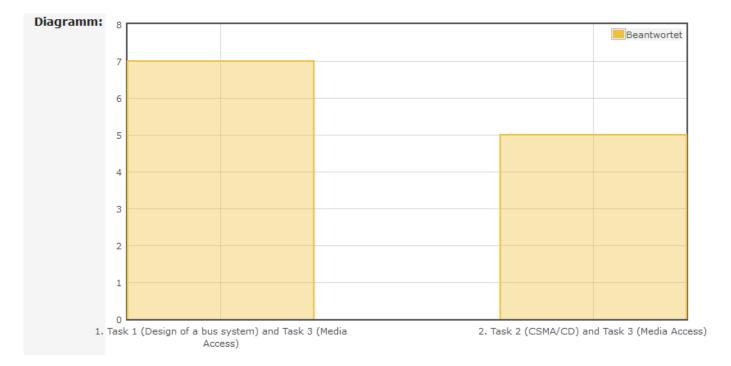


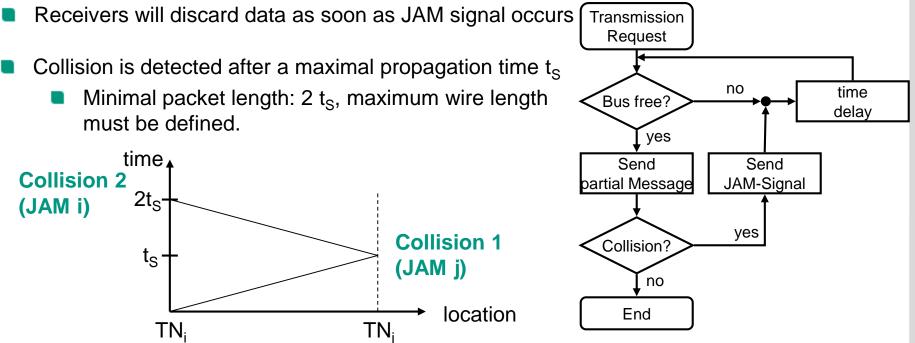
Institut für Technik der Informationsverarbeitung

Institut für Technik der Informationsverarbeitung (ITIV)


KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.itiv.kit.edu

Results of the survey


Design a bus system and Media access

CSMA/CD (CD = Collision Detect)

- Direct detection of collisions
- Sender is always reading the channel and checks if the signal sent is identical to the one being read.
 - Fast detection if a collision has occurred
- Sender detects a collision:
 - Transmission of a JAM signal, transmission is ceased
 - Node that is transmitting simultaneously is detecting the JAM signal and ceases its transmission as well

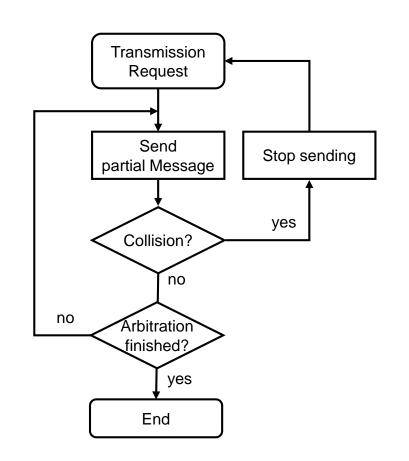
Properties of CSMA/CD

- Easy to be extended, no configuration needed
- Data destruction possible
- Need to discard already sent data after collision has occurred
- Bad channel utilization
 Rule of thumb: 30%-70%
- No guaranteed Real-Time Capability

CSMA/CA (CA = Collision Avoidance)

- Avoidance of collisions by priority controlled bus arbitration.
- Every node is assigned an identifier (ID) that equals its priority.
- After completing a transmission on the bus, all nodes with a transmission request start to send their ID. All nodes are connected via wired-OR or via wired-AND respectively.
 - wired-OR: "1" dominant, "0" recessive
 - wired-AND: "0" dominant, "1" recessive
- A transmission starts with the most significant bit (MSB).
 - Each sender monitors the bus level during each bit being send
 - As soon as the bit currently being read from the bus is not identical with the bit send by the node, the node retreats and retries the transmission later.

Arbitration process for CSMA/CA

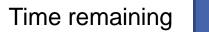

- Requirements
 - Unique ID per message/node
 - All nodes start arbitration at the same time
 - Bitwise arbitration
 - Bit is long enough, so that all nodes can read it

Procedure

6

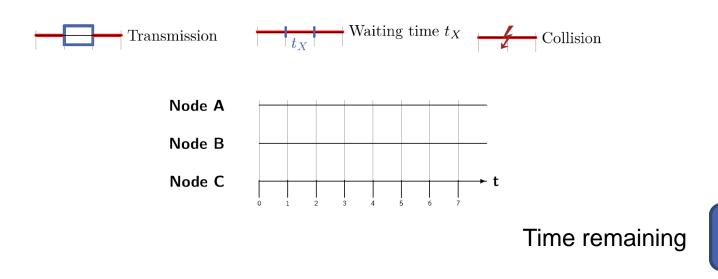
Exercise 3

- Send arbitration ID bit per bit
- If data on bus is the same as sending data \rightarrow continue arbitration
- If data is different \rightarrow arbitration lost, withdraw from bus

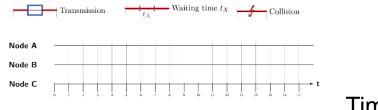


Properties of CSMA/CA

- No data destruction
- No need to discard already sent data
- 100% channel utilization is possible
- Limited length of bus and/or transmission rate
- Very limited Real-Time Capability
 - If the packet length is finite, the node with the highest priority can adhere to real-time constraints.
 - Bus can be blocked if node with highest priority is constantly transmitting.
 - In general each node has to wait after a transmission for a predefined time before transmitting a new message.
 - Other nodes can adhere to real-time constraints as well if waiting time is long enough.


Task 1: Design of a bus system

Task 2.1: CSMA/CD A)+B)

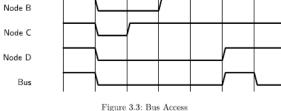


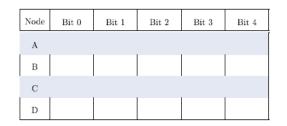
Task 2.1: CSMA/CD

(C)

• /		
Node	Packet length	Waiting time
А	1	
в	2	
С	3	

Table 3.2: Modified waiting time




Time remaining

Task 2.2: CSMA/CA A)-E) Node A Node B

